等比数列的求和公式Sn=a1×(1-q^n)/(1-q),Sn=n×a1(当q=1时);推导过程为:q×Sn=a1×q+a2×q+…+an×q=a2+a3+…+a(n+1),Sn-q×Sn=a1-a(n+1)=a1-a1×q^n,(1-q)×Sn=a1×(1-q^n)。
等比数列的主要性质:
1、若m、n、p、q∈N,且m+n=p+q,则aman=apaq;
2、在等比数列中,依次每k项之和仍成等比数列;
3、若m、n、q∈N,且m+n=2q,则am×an=(aq)2;
4、若G是a、b的等比中项,则G2=ab(G≠0);
5、在等比数列中,首项a1与公比q都不为零;
6、在数列{an}中每隔k(k∈N*)取出一项,按原来顺序排列,所得新数列仍为等比数列且公比为q(k+1);
7、当数列{an}使各项都为正数的等比数列,数列{lgan}是lgq的等差数列。
标签:等比数列,推导,求和
版权声明:文章由 百问十四 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.baiwen14.com/article/351564.html