当前位置:百问十四>百科知识>排序算法概述

排序算法概述

2024-06-24 09:38:48 编辑:join 浏览量:546

排序算法概述

十大排序算法:冒泡排序,选择排序,插入排序,归并排序,堆排序,快速排序、希尔排序、计数排序,基数排序,桶排序

稳定 :如果a原本在b前面,而a=b,排序之后a仍然在b的前面;

不稳定 :如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;

排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,前一个键排序的结果可以为后一个键排序所用。

算法的复杂度往往取决于数据的规模大小和数据本身分布性质。

时间复杂度 : 一个算法执行所耗费的时间。

空间复杂度 :对一个算法在运行过程中临时占用存储空间大小的量度。

常见复杂度由小到大 :O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n)

在各种不同算法中,若算法中语句执行次数(占用空间)为一个常数,则复杂度为O(1);

当一个算法的复杂度与以2为底的n的对数成正比时,可表示为O(log n);

当一个算法的复杂度与n成线性比例关系时,可表示为O (n),依次类推。

冒泡、选择、插入排序需要两个for循环,每次只关注一个元素,平均时间复杂度为

(一遍找元素O(n),一遍找位置O(n))

快速、归并、堆基于分治思想,log以2为底,平均时间复杂度往往和O(nlogn)(一遍找元素O(n),一遍找位置O(logn))相关

而希尔排序依赖于所取增量序列的性质,但是到目前为止还没有一个最好的增量序列 。例如希尔增量序列时间复杂度为O(n²),而Hibbard增量序列的希尔排序的时间复杂度为 , 有人在大量的实验后得出结论;当n在某个特定的范围后希尔排序的最小时间复杂度大约为n^1.3。

从平均时间来看,快速排序是效率最高的:

快速排序中平均时间复杂度O(nlog n),这个公式中隐含的常数因子很小,比归并排序的O(nlog n)中的要小很多,所以大多数情况下,快速排序总是优于合并排序的。

而堆排序的平均时间复杂度也是O(nlog n),但是堆排序存在着重建堆的过程,它把根节点移除后,把最后的叶子结点拿上来后需要重建堆,但是,拿上的值是要比它的两个叶子结点要差很多的,一般要比较很多次,才能回到合适的位置。堆排序就会有很多的时间耗在堆调整上。

虽然快速排序的最坏情况为排序规模(n)的平方关系,但是这种最坏情况取决于每次选择的基准, 对于这种情况,已经提出了很多优化的方法,比如三取样划分和Dual-Pivot快排。

同时,当排序规模较小时,划分的平衡性容易被打破,而且频繁的方法调用超过了O(nlog n)为

省出的时间,所以一般排序规模较小时,会改用插入排序或者其他排序算法。

一种简单的排序算法。它反复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。这个工作重复地进行直到没有元素再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为元素会经由交换慢慢“浮”到数列的顶端。

1.从数组头开始,比较相邻的元素。如果第一个比第二个大(小),就交换它们两个;

2.对每一对相邻元素作同样的工作,从开始第一对到尾部的最后一对,这样在最后的元素应该会是最大(小)的数;

3.重复步骤1~2,重复次数等于数组的长度,直到排序完成。

首先,找到数组中最大(小)的那个元素;

其次,将它和数组的第一个元素交换位置(如果第一个元素就是最大(小)元素那么它就和自己交换);

再次,在剩下的元素中找到最大(小)的元素,将它与数组的第二个元素交换位置。如此往复,直到将整个数组排序。

这种方法叫做选择排序,因为它在不断地选择剩余元素之中的最大(小)者。

对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

为了给要插入的元素腾出空间,我们需要将插入位置之后的已排序元素在都向后移动一位。

插入排序所需的时间取决于输入中元素的初始顺序。例如,对一个很大且其中的元素已经有序(或接近有序)的数组进行排序将会比对随机顺序的数组或是逆序数组进行排序要快得多。

总的来说,插入排序对于部分有序的数组十分高效,也很适合小规模数组。

一种基于插入排序的快速的排序算法。简单插入排序对于大规模乱序数组很慢,因为元素只能一点一点地从数组的一端移动到另一端。例如,如果主键最小的元素正好在数组的尽头,要将它挪到正确的位置就需要N-1 次移动。

希尔排序为了加快速度简单地改进了插入排序,也称为缩小增量排序,同时该算法是突破O(n^2)的第一批算法之一。

希尔排序是把待排序数组按一定数量的分组,对每组使用直接插入排序算法排序;然后缩小数量继续分组排序,随着数量逐渐减少,每组包含的元素越来越多,当数量减至 1 时,整个数组恰被分成一组,排序便完成了。这个不断缩小的数量,就构成了一个增量序列。

在先前较大的增量下每个子序列的规模都不大,用直接插入排序效率都较高,尽管在随后的增量递减分组中子序列越来越大,由于整个序列的有序性也越来越明显,则排序效率依然较高。

从理论上说,只要一个数组是递减的,并且最后一个值是1,都可以作为增量序列使用。有没有一个步长序列,使得排序过程中所需的比较和移动次数相对较少,并且无论待排序列记录数有多少,算法的时间复杂度都能渐近最佳呢?但是目前从数学上来说,无法证明某个序列是“最好的”。

常用的增量序列

希尔增量序列 :{N/2, (N / 2)/2, ..., 1},其中N为原始数组的长度,这是最常用的序列,但却不是最好的

Hibbard序列:{2^k-1, ..., 3,1}

Sedgewick序列:{... , 109 , 41 , 19 , 5,1} 表达式为

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法的一个非常典型的应用。

对于给定的一组数据,利用递归与分治技术将数据序列划分成为越来越小的半子表,在对半子表排序后,再用递归方法将排好序的半子表合并成为越来越大的有序序列。

为了提升性能,有时我们在半子表的个数小于某个数(比如15)的情况下,对半子表的排序采用其他排序算法,比如插入排序。

若将两个有序表合并成一个有序表,称为2-路归并,与之对应的还有多路归并。

快速排序(Quicksort)是对冒泡排序的一种改进,也是采用分治法的一个典型的应用。

首先任意选取一个数据(比如数组的第一个数)作为关键数据,我们称为基准数(Pivot),然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序,也称为分区(partition)操作。

通过一趟快速排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数组变成有序序列。

为了提升性能,有时我们在分割后独立的两部分的个数小于某个数(比如15)的情况下,会采用其他排序算法,比如插入排序。

基准的选取:最优的情况是基准值刚好取在无序区数值的中位数,这样能够最大效率地让两边排序,同时最大地减少递归划分的次数,但是一般很难做到最优。基准的选取一般有三种方式,选取数组的第一个元素,选取数组的最后一个元素,以及选取第一个、最后一个以及中间的元素的中位数(如4 5 6 7, 第一个4, 最后一个7, 中间的为5, 这三个数的中位数为5, 所以选择5作为基准)。

Dual-Pivot快排:双基准快速排序算法,其实就是用两个基准数, 把整个数组分成三份来进行快速排序,在这种新的算法下面,比经典快排从实验来看节省了10%的时间。

许多应用程序都需要处理有序的元素,但不一定要求他们全部有序,或者不一定要一次就将他们排序,很多时候,我们每次只需要操作数据中的最大元素(最小元素),那么有一种基于二叉堆的数据结构可以提供支持。

所谓二叉堆,是一个完全二叉树的结构,同时满足堆的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。在一个二叉堆中,根节点总是最大(或者最小)节点。

堆排序算法就是抓住了这一特点,每次都取堆顶的元素,

标签:排序,算法,概述

版权声明:文章由 百问十四 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.baiwen14.com/article/101130.html
热门文章