离散数学试题(A卷及答案)
一、证明题(10分)
1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R
证明:左端(P∧Q∧R)∨((Q∨P)∧R)((P∧Q)∧R))∨((Q∨P)∧R)
((P∨Q)∧R)∨((Q∨P)∧R)((P∨Q)∨(Q∨P))∧R
((P∨Q)∨(P∨Q))∧RT∧R(置换)R
2)x(A(x)B(x))xA(x)xB(x)
证明:x(A(x)B(x))x(A(x)∨B(x))xA(x)∨xB(x)xA(x)∨xB(x)xA(x)xB(x)
二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)
证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R))
(P∧(Q∨R))∨(P∧Q∧R)
(P∧Q)∨(P∧R))∨(P∧Q∧R)
(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R)
m0∨m1∨m2∨m7
M3∨M4∨M5∨M6
三、推理证明题(10分)
1)C∨D, (C∨D)E,E(A∧B), (A∧B)(R∨S)R∨S
证明:(1) (C∨D)E(2)E(A∧B)(3) (C∨D)(A∧B)
(4) (A∧B)(R∨S)(5) (C∨D)(R∨S)(6) C∨D(7) R∨S
2)x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x))
证明(1)xP(x)
(2)P(a)
(3)x(P(x)Q(y)∧R(x))
(4)P(a)Q(y)∧R(a)
(5)Q(y)∧R(a)
(6)Q(y)
(7)R(a)
(8)P(a)
(9)P(a)∧R(a)
(10)x(P(x)∧R(x))
(11)Q(y)∧x(P(x)∧R(x))
四、设m是一个取定的正整数,证明:在任取m+1个整数中,至少有两个整数,它们的差是m的整数倍
证明设,,…,为任取的m+1个整数,用m去除它们所得余数只能是0,1,…,m-1,由抽屉原理可知,,,…,这m
标签:离散数学,期末考试,几套