七年级上册数学角课件1 (一)教材的地位和作用
地位:《角》是北师大版七年级上册第四章《基本平面图形》的第三节,是学完直线、射线、线段知识的延续,又是研究其它图形的基础,本节课的学习
将为后面学习角的比较与运算建立基础,同时又对今后的几何学习有重要的意义。作用:1、能够培养学生观察、探究、抽象、概括的能力和数学思想方法,为学生的创新学习、主动学习打下基础。2、能让学生从具体到抽象、从感性到理性的认知规律,感知知识源于实践的唯物主义思想。
(二)学情分析
七年级学生好动,注意力易分散,爱发表见解,希望收到老师的表扬,在教学中我抓住学生这一特点,通过直观演示,引起学生的兴趣,把它们的注意力集中在课堂中,通过学生动手画图,发表见解,发挥学生学习积极性。
课时安排
1课时
教学目标
知识与技能
理解角的定义及有关概念,从运 初中数学微课角教学设计 动的观点理解平角、周角;
过程与方法
提高学生的识图能力,学会用运动变化的观点看问题
情感态度与价值观
经历在现实情境中认识 初中数学微课角教学设计 角的数学活动过程,感受图形 初中数学微课角教学设计 世界的丰富多彩,增强审美意识,激发学生的求知欲、
重点
角的概念;
难点
从运动的观点理解角的概念
教具准备
多媒体课件,三角板
教学过程
一、引入新课
1、出示课件:你能在图中找到熟悉的平面图形吗?
2、生活中还有这样的图形吗?
3、这些图形有什么共同的特点?
二、新课教学
1、角的概念的学习:
(1)观察图思考: 初中数学微课角教学设计 角是什么?得出角的定义:有公共端点的两条射线所组成的图形叫做角。 这个公共端点叫做角的顶点,这两条射线叫做角的边。(可对照图形讲解)
(2)你 初中数学微课角教学设计 会画角吗?请在练习本上画一个角。
(3)一组练习,说出角的顶点 角的边
(4) 初中数学微课角教学设计 由钟表的分针转动得到角,生活中还有这样的图形吗?学生举例从而引出角的另一个定义: 一条射线绕着它的端点旋转而成的图形也叫做角。其中起始位置的射线叫做角的始边,终止位置叫做角的终边
(5)通过课件动画演示直观旋转理解角的第二种定义以及直角、平角、周角
初中数学微课角教学设计三、一组练习 判断:
(1)两条射线组成的图形叫做角。( )
(2)平角是一条直线 ( )
(3)一条射线是一个周角。 ( )
(4 )把一个角放到一个放大10倍的放大
镜下观看,角的度数也扩大10倍。 ( )
(5)角的大小与边的长短无关 。 ( )
三、小结
学生总结角的两种定义,教师点评,加深印象鼓励学生敢于发表自己的见解,在交流中获益
四、布置作业:练习册4、3、1角>
七年级上册数学角课件2
教学目标:
1、通过操作活动探索发现和验证“三角形的内角和是180度”的规律。
2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。并运用新知识解决问题。
3、使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。
教学重点 :探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
教学难点 :对不同探究方法的指导和学生对规律的灵活应用。
教具学具准备 :课件、学生准备不同类型的三角形各一个,量角器。
教学过程:
一、创设情景,引出问题
形状似座山,稳定性能坚。
三竿首尾连,学问不简单。
(打一图形名称)三角形(板书)
2、猜三角形(课件)
师:老师这有3个三角形,每个三角形的一部分被长方形给遮住了,你知道这是什么三角形吗?
师:提问第3个图形时问:被遮住的两个角是什么角?
会是两个直角吗?为什么?
(引导学生开始对“三角形的内角和是多少”进行思索。)
3、引出课题。
师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。(板书课题)
二、探究新知
1、三角形的内角、内角和
(1)什么是三角形内角(课件)
三角形里面的三个角都是三角形的内角。为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。
(2)三角形内角和
师:内角和指的是什么?
生:三角形的三个角的度数的和,就是三角形的内角和。
(多让几个学生说一说)
2、猜一猜。
师:这个三角形的内角和是多少度?
师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?
预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?
3操作验证:小组合作。
选1个自己喜欢的三角形,选喜欢的方法进行验证。
(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)
4学生汇报。
(1)教师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?
师:有没有别的方法验证。
(2)剪拼
a、学生上台演示。
B、请大家四人小组合作,用他的方法验证其它三角形。
C、展示学生作品。
D、师展示。
(3)折拼
师:有没有别的验证方法?
师:我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。
(鼓励学生积极开动脑筋,从不同途径探究解决问题的方法,同时给予学生足够的时间和空间,不断让每个学生自己参与,而且注重让学生在经历观察、操作、分析、推理和想像活动过程中解决问题,发展空间观念和论证推理能力。)
(4)数学文化
师:除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°早在300多年前就有一个科学家,他在12岁时就验证了任何三角形的内角和都是180°(课件)帕斯卡(BlaisePascal,1623~1662) ,法国数学家、物理学家、近代概率论的奠基者。早在300多年前这位法国著名的科学家就已经发现了任何三角形的内角和是180度,而他当时才12岁。
5、巩固知识。
(1)师:你对三角形内角和是多少度还有疑问吗?现在我们可以肯定的说:三角形的内角和是?度。
(2)解决课前问题,为什么画不出1个含有2个直角的三角形?
1个三角形中有没有2个钝角?
(3)师:我们对三角形的认识已经非常清晰,
出示2个三角形,生分别说出内角和。
把两个小三角形拼在一起,问:大三角形的内角和是?度。
教师:为什么不是360°?
三、解决相关问题
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数
2、书上88页10题。
教师:刚才,我们利用了三角形的什么?
3、教师:如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、判断。
5、求4边形、5边形内角和。
下课的时间就要到了,我们来一个挑战题。你们敢接受挑战吗?
如果要求10边形的内角和,你会求吗?你有什么发现?
(我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。)
四、总结。
师:这节课你有什么收获?
五、板书设计:
三角形的内角和是180°
∠1+∠2+∠3=180°
度量
剪拼
折拼
标签:七年级,课件,上册