当前位置:百问十四>百科知识>该如何使用配方法解一元二次方程?

该如何使用配方法解一元二次方程?

2024-09-14 18:55:18 编辑:join 浏览量:581

该如何使用配方法解一元二次方程?

配方法其实是基于直接开方法,利用开方和的完全平方公式特性来解。完全平方公式是将一个两项系数的式子的平方变成三项,进行因式分解。用字母表示为:(a+b)²=a²+2ab+b²、(a-b)²=a²-2ab+b²。用配方法解一元二次方程的一般步骤:

(1)把常数项移到等号的右边;

(2)把二次顶系数化为1;

(3)等式两边同时加上一次项系数一半的平方;

(4)运用直接开平方法求得方程的根。

扩展资料:

当二次项系数不为一时,用配方法解一元二次方程的一般步骤:

1、化二次项系数为1。

2、移常数项到方程右边。

3、方程两边同时加上一次项系数一半的平方。

4、化方程左边为完全平方式。

5、(若方程右边为非负数)利用直接开平方法解得方程的根。

参考资料来源:

在一元二次方程中,配方法其实就是把一元二次方程移项之后,在等号两边都加上一次项系数绝对值一半的平方。

【例】解方程:2x²+6x+6=4

分析:原方程可整理为:x²+3x+3=2,通过配方可得(x+1.5)²=1.25通过开方即可求解。

解:2x²+6x+6=4

<=>(x+1.5)²=1.25

x+1.5=1.25的平方根

扩展资料

求解方程的原则:

1.移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;

2.等式的基本性质

性质1

等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。则:(1)

(2)

性质2

等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。

用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:

a×c=b×c 或

性质3

若a=b,则b=a(等式的对称性)。

性质4

若a=b,b=c则a=c(等式的传递性)。

参考资料:

标签:一元二次方程

版权声明:文章由 百问十四 整理收集,来源于互联网或者用户投稿,如有侵权,请联系我们,我们会立即处理。如转载请保留本文链接:https://www.baiwen14.com/article/344223.html
热门文章